

MH176 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

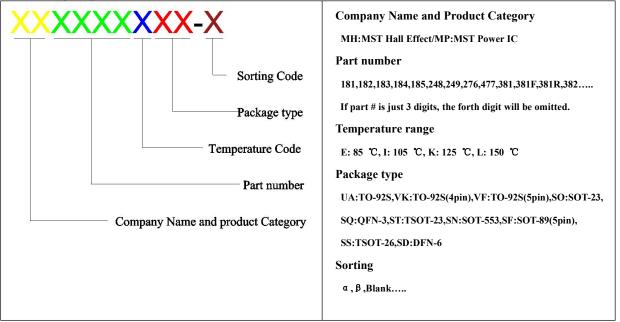
MH176 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH176 is rated for operation between the ambient temperatures $-40\,^{\circ}\mathrm{C}$ and $85\,^{\circ}\mathrm{C}$ for the E temperature range, and $-40\,^{\circ}\mathrm{C}$ to $125\,^{\circ}\mathrm{C}$ for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP-3 for through-hole mounting.

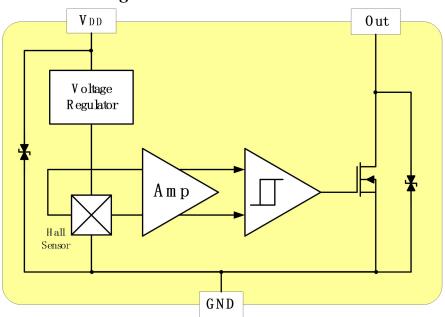
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits


- CMOS Hall IC Technology.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection


Ordering Information

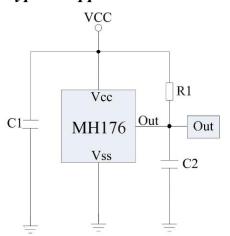
Part No.	Temperature Suffix	Package Type
MH176KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH176EUA	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	UA (TO-92S)
MH176KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH176ESO	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)
MH176KSD	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SD (DFN2*2-6L)
MH176ESD	$E (-40^{\circ}C \text{ to} + 85^{\circ}C)$	SD (DFN2*2-6L)
MH176KSM	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SM (DFN1.6*1.6-6L)
MH176ESM	$E \left(-40^{\circ}C \text{ to} + 85^{\circ}C\right)$	SM (DFN1.6*1.6-6L))

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

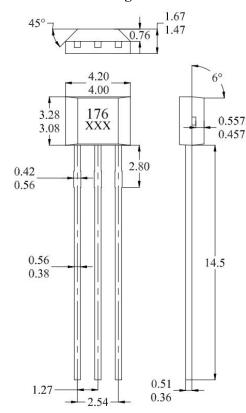
Characteristics		Values	Unit
Supply Voltage (V _{DD})		7.0	V
Output Voltage, (V _{OUT})		7.0	V
Reverse Voltage, (V _{DD} / V _{OUT})		-0.3	V
Output Current, (I _{SINK})		10	mA
Omenating Tomas anothers Demon (T.)	"E" Class	-4 0 ∼ +85	$^{\circ}\! \mathbb{C}$
Operating Temperature Range, (T _A)	"K" Class	- 40 ∼ +125	$^{\circ}\mathbb{C}$
Storage Temperature Range, (Ts)		- 65 ∼ +150	$^{\circ}\mathbb{C}$
Maximum Junction Temp, (T _J)		150	$^{\circ}\mathbb{C}$
Thermal Resistance	(θ _{JA}) UA/SO/SD/SM	206/543/160/250	°C/W
	(θ _{JC}) UA/SO/SD/SM	148/410/35/50	°C/W
Package Power Dissipation, (PD) UA/SO/SD/SM		606/230/780/500	mW

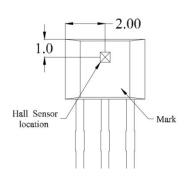

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters T_A =+25 °C, V_{DD} =5.0V

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V _{DD})	Operating	1.8		6.0	V
Supply Current, (I _{DD})	B <b<sub>OP</b<sub>		5.0	7.0	mA
Output Saturation Voltage, (V _{DSON})	I _{OUT} =5mA, B>B _{OP}			400.0	mV
Output Leakage Current, (I _{OFF})	I_{OFF} B <b<sub>RP, V_{OUT} = 5.0V</b<sub>			10.0	uA
Power-On Time, (T _{PO})	Power-On			0.10	us
Output Response Time, (T _{RES})	Operating			0.50	ms
Output Switch Frequency, (Fsw)	Operating	3			kHz
Output Rise Time, (T _R)	$R_L=1k\Omega$, $C_L=20pF$			2.00	us
Output Fall Time, (T _F)	RL=1k Ω ; C _L =20pF			0.15	us
Electro-Static Discharge	HBM	4			kV
Operate Point,(Bop)	UA/SD/SM/SO	5(-25)		25(-5)	Gauss
Release Point,(Brp)	UA/SD/SM/SO	-25(5)		-5(25)	Gauss
Hysteresis,(BHYS)			30		Gauss

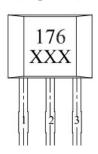

Typical Application circuit


C1: 10nFC2: 1nFR1: 1K Ω

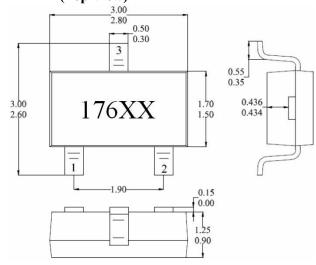
Sensor Location, Package Dimension and Marking

UA Package

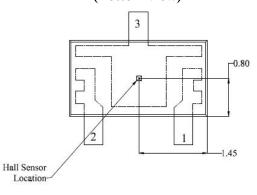
Hall Chip location


NOTES:

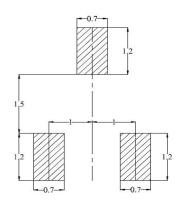
- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:


Pin 1	VDD
Pin 2	GND
Pin 3	Output

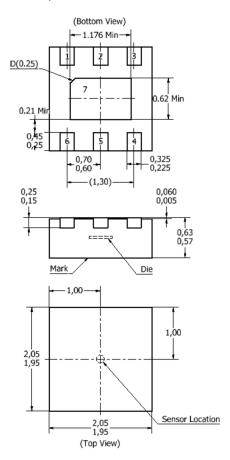
Output Pin Assignment


(Top view)

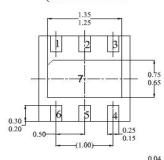
SO Package (Top View)

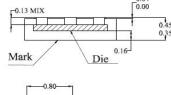

Hall Plate Chip Location (Bottom view)

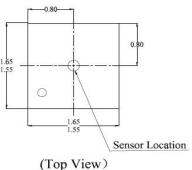
NOTES:


- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

(For reference only)Land Pattern

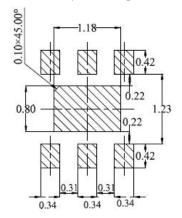

SD package (DFN2*2-6L)


(Bottom View)



SM Package(DFN1.6*1.6-6L)

(Bottom View)

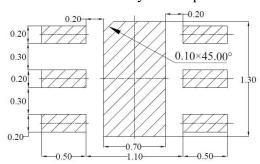

NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum

4. PINOUT:

Pin No.	Pin Name	Function
1	$V_{ m DD}$	Power Supply
2	N.C	N.C
3	Vout	Output
4,6,7	N.C	N.C
5	Vss	Ground

5. (For reference only) Land pattern


NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum

4. PINOUT:

Pin No.	Pin Name	Function
1	VDD	Power Supply
2	N.C	N.C
3	VOUT	Output
4,6,7	N.C	N.C
5	VSS	Ground

5. (For reference only) Land pattern

