

MH180 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH180 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

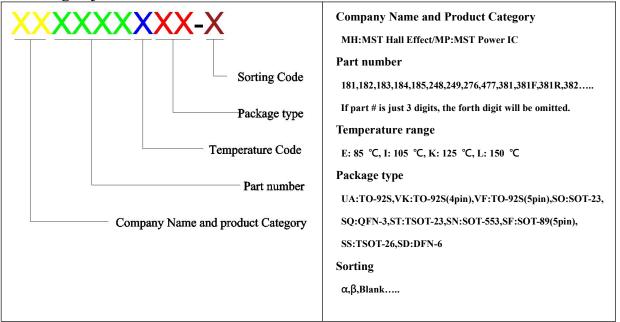
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH180 is rated for operation between the ambient temperatures –40°C and 85°C for the E temperature range, and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package; Package SF is an SOT89-5L, a low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

#### Features and Benefits

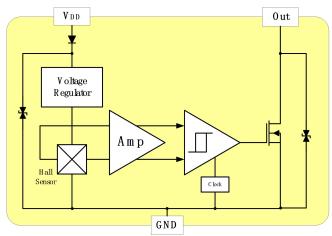
- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


### **Applications**

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

052724 Page 1 of 4 Rev. 1.02




## Ordering Information



| Part No. | Temperature Suffix                                           | Package Type |
|----------|--------------------------------------------------------------|--------------|
| MH180KUA | $K (-40^{\circ}C \text{ to} + 125^{\circ}C)$                 | UA (TO-92S)  |
| MH180KSO | $K (-40^{\circ}C \text{ to} + 125^{\circ}C)$                 | SO (SOT-23)  |
| MH180EUA | $E (-40^{\circ}C \text{ to} + 85^{\circ}C)$                  | UA (TO-92S)  |
| MH180ESO | $E \left(-40^{\circ}\text{C to} + 85^{\circ}\text{C}\right)$ | SO (SOT-23)  |

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

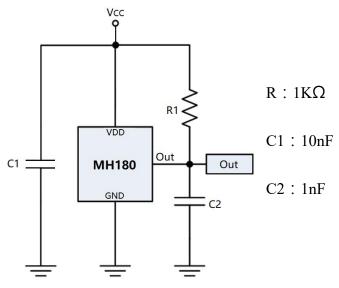
## Functional Diagram





Absolute Maximum Ratings At (Ta=25°C)

| Characteristics                                |                |             | Values          | Unit  |
|------------------------------------------------|----------------|-------------|-----------------|-------|
| Supply voltage, (VDD)                          |                |             | 28              | V     |
| Output Voltage,(Vout)                          |                |             | 28              | V     |
| Reverse voltage, $(V_{DD})$                    |                |             | -28             | V     |
| Magnetic flux density                          |                |             | Unlimited       | Gauss |
| Output current, (Isink)                        |                | 50          | mA              |       |
| On aroting Tomporature Range                   | $(T_{\alpha})$ | "E" version | -40 to +85      | °C    |
| Operating Temperature Range                    | s, (1a)        | "K" version | -40 to +125     | °C    |
| Storage temperature range, ( <i>Ts</i> )       |                |             | -65 to +150     | °C    |
| Maximum Junction Temp,( <i>Tj</i> )            |                | 150         | °C              |       |
| Thermal Resistance                             | $(	heta_{ja})$ | UA / SO/ SF | 206 / 543/ 156  | °C/W  |
|                                                | $(	heta_{jc})$ | UA / SO/ SF | 148 / 410/ 34   | °C/W  |
| Package Power Dissipation, $(P_D)$ UA / SO/ SF |                |             | 606 / 230 / 800 | mW    |


Note: Do not apply reverse voltage to  $V_{DD}$  and  $V_{OUT}$  Pin, It may be caused for Miss function or damaged device.

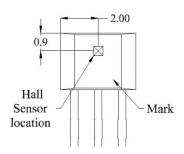
### **Electrical Specifications**

DC Operating Parameters:  $T_A=+25$  °C,  $V_{DD}=12V$ 

| Parameters                                   | Test Conditions                                | Min | Тур  | Max   | Units |
|----------------------------------------------|------------------------------------------------|-----|------|-------|-------|
| Supply Voltage, $(V_{DD})$                   | Operating                                      | 2.5 |      | 24.0  | V     |
| Supply Current, $(I_{DD})$                   | B <b<sub>OP</b<sub>                            |     |      | 5.0   | mA    |
| Output Saturation Voltage, $(V_{sat})$       | $I_{OUT} = 20 \text{ mA}, B>B_{OP}$            |     |      | 400.0 | mV    |
| Output Leakage Current, (Ioff)               | $I_{OFF}$ B <brp, <math="">V_{OUT}= 12V</brp,> |     |      | 10.0  | uA    |
| Internal Oscillator Chopper Frequency,(fosc) |                                                |     | 69   |       | kHz   |
| Output Rise Time, $(T_R)$                    | RL=1.1K $\Omega$ , CL =20pF                    |     | 0.04 | 0.45  | uS    |
| Output Fall Time, $(T_F)$                    | RL=820Ω; CL =20pF                              |     | 0.18 | 0.45  | uS    |
| Electro-Static Discharge                     | HBM                                            | 4   |      |       | KV    |
| Operate Point,(BOP)                          | UA, SF, SO                                     | 10  | 50   | 90    | Gauss |
| Release Point,(BRP)                          | UA, SF, SO                                     | 90  | -50  | -10   | Gauss |
| Hysteresis,(BHYS)                            |                                                |     | 100  |       | Gauss |

## Typical application circuit



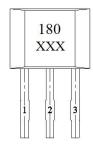



### Sensor Location, Package Dimension and Marking

#### **UA Package**

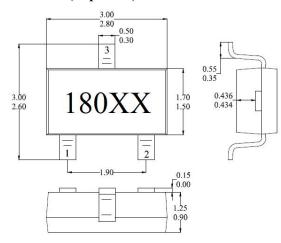
## 4.10 3.90 180 3.10 0.557 2.90 XXX 0.457 0.42 0.56 0.56 14.5 0.38 0.51 1.27 0.36

#### **Hall Chip location**



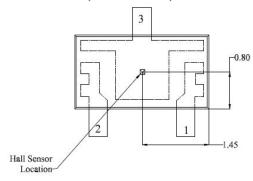

#### **NOTES:**

- 1. Controlling dimension: mm
- Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:


| Pin 1 | $V_{DD}$ |
|-------|----------|
| Pin 2 | GND      |
| Pin 3 | Output   |

### Output Pin Assignment (Top view)




SO Package

(Top View)



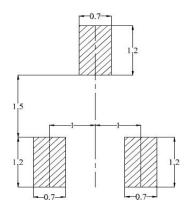
### **Hall Plate Chip Location**

(Bottom view)



#### **NOTES:**

1. PINOUT (See Top View at left:)


Pin 1 V<sub>DD</sub>

Pin 2 Output

Pin 3 GND

- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

#### (For reference only)Land Pattern

